IEC 62467-1 Ed. 1.0 b:2009

Click here to purchase
IEC 62467-1:2009 specifies the performance and some related constructional requirements of well-type ionization chambers and associated measurement apparatus, intended for the determination of a quantity, such as air kerma strength or reference air kerma rate in photon radiation fields or absorbed dose to water at a depth, in photon and beta radiation fields used in brachytherapy, after appropriate calibration for a given type of source. IEC 62467-1:2009 covers the techniques for the quantification of the quantity appropriate for the brachytherapy source under consideration. This quantity may be air kerma strength or reference air kerma rate at 1 m, or absorbed dose to water at a depth (e.g. 2 mm or 5 mm). Measurement of these quantities may be accomplished by a variety of well-type ionization chambers or systems currently available for this purpose. This standard applies to products intended for low dose rate, high dose rate, intravascular, both photon and beta, brachytherapy measurements. It does not apply to instruments for nuclear medicine applications. The application of the standard is limited to instruments that incorporate well-type ionization chambers as detectors. The intended use is the measurement of the output of radioactive, encapsulated sources for intracavitary (insertion into body cavities) or interstitial (insertion into body tissue) applications. The object of IEC 62467-1:2009 is
a) to establish requirements for a satisfactory level of performance for well-type chamber systems, and
b) to standardize the methods for the determination of compliance with this level of performance.
IEC 62467-1:2009 is not concerned with the safety aspects of well-type chamber systems. The well-type chamber systems covered by this standard are not intended for use in patient environment. The electrical safety of well-type chamber systems is covered in IEC 61010-1. The operation of the electrometer measuring system is covered in IEC 60731.

Product Details

Edition:
1.0
Published:
06/09/2009
Number of Pages:
49
File Size:
1 file , 1.2 MB